
Department of Computer Science & Information technology
Guru Ghasidas University

Subject: Object Oriented Concepts (PCSC-502)

Class: BSC-V
 [Max Marks: 30]

[Duration: 3 Hrs]
Instruction: Q.1 is compulsory and any FOUR questions from Q.2 to Q.8.

Section - A (5x2=10 Marks)

Q1.

a) Define Parameterized Constructor with example.
b) Explain different type of visibility mode.
c) Define class and object with example.
d) Explain static members with the help of example.
e) Explain Run time polymorphism.

Section - B (4x5=20 Marks)

Q2. What is inheritance? Describe single and multiple inheritance with
the help of example.

Q3. Explain unary operator overloading using member function and
friend function (give code).

Q4. Write point wise difference between Procedural Oriented
Programming and Object Oriented Programming (at least 6).

Q5. Explain Union and Structure with example and compare union and
structure with class.

Q6. What is the difference between arguments passed by value or passed
as reference? Explain the difference with the help of an example.

Q7. What are Constructors and Destructors? Explain with the help of an
example.

Q8. Explain data abstraction with example .

AV-8929

B.Sc. (Fifth Semester) Esamination, 2015-16

Object Oriented Concepts

Paper : PCSC-502

Answer 1 (i)

Definition

In C++,Constructor is automatically called when object(instance of class) create.It

is special member function of the class.Which constructor has arguments thats

called Parameterized Constructor.

 It has same name of class.

 It must be a public member.

 No Return Values.

 Default constructors are called when constructors are not defined for the

classes.

Syntax

class class-name
{
 Access Specifier:

 Member-Variables
 Member-Functions
 public:
 class-name(variables)
 {
 // Constructor code

 }

 ... other Variables & Functions
}

Example Program

/* Example Program For Simple Example Program Of

Parameterized Constructor In C++
*/

#include<iostream>
#include<conio.h>

using namespace std;

class Example {

 // Variable Declaration
 int a,b;
 public:

 //Constructor
 Example(int x,int y) {

 // Assign Values In Constructor
 a=x;
 b=y;
 cout<<"Im Constructor\n";
 }

 void Display() {
 cout<<"Values :"<<a<<"\t"<<b;
 }
};

int main() {

 Example Object(10,20);
 // Constructor invoked.
 Object.Display();

 // Wait For Output Screen
 getch();
 return 0;

}

Sample Output

Im Constructor

Values :10 20

Answer 1(ii)

You should write three type of visibility mode

Public

Private

Protected

and explain them with visibility chart of inheritance..

 (Refer:- page no. 99,100, 212 Book name :- Object Oriented Programming C++

fourth Edition)

 Answer 1(iii)

Object - Objects have states and behaviors. Example: A dog has states - color,

name, breed as well as behaviors - wagging, barking, and eating. An object is an

instance of a class.

Class - A class can be defined as a template/blueprint that
describes the behaviors/states that object of its type support.
Example car is a class maruti is a object of class car.

Answer 1 (IV)

Static members: A member of a class can be qualified as static using static

keyword. Therefore, static members can be either static data member or static

member functions.

You are instructed to give an example of either static data member or static
member function:

For static data member, it is initialized to zero when the first object of its
class is created. No other initialization is permitted. Only one copy of the
member will be created and that copy will be shared by the all objects of its
class. Its lifetime is throughout the program.

For static member function, it can have access to only static members
declared in the same class. It can be invoked using its classname and scope
resolution operator instead of its class object.

Example for declare a static data member and static member function:
class test
{
 static int x;
};
int test::x;

class test
{ public:
 static void fun(void)

{}
 };

 void main()
{
 test t1;
 test::fun(); //calling of static member function
}

Answer 1(V)

Run time polymorphism:

C++ allows binding to be delayed till run time. When you have a function with

same name, equal number of arguments and same data type in same sequence in

base class as well derived class and a function call of form: base_class_type_ptr-

>member_function(args); will always call base class member function. The

keyword virtual on a member function in base class indicates to the compiler to

delay the binding till run time. The overloaded member function are selected for

invoking by matching argument, both type and number this information is known

to the compiler much later after compilation.

Looking at the content of base class type pointer it will correctly call the member

function of one of possible derived / base class member function.

Example of run time polymorphism:

class Base

{

public:

 virtual void display(int i)

 { cout<<"Base::"<<i; }

};

class Derv: public Base

{

public:

 void display(int j)

 { cout<<"Derv::"<<j; }

};

int main()

{

 Base *ptr=new Derv;

 ptr->display(10);

 return 0;

}

Output: Derv::10

Answer 2.
 Reusability is an important feature of object oriented concepts. C++

strongly supports reusability. Once a class is designed, compiled and
applied successfully then that class can be reused by any other programmer
at any time. Reusability of coding can be achieved by many ways in C++;
one of them is inheritance. This is basically creating new classes, reusing
the properties of existing classes or extending the existing classes. Here the
existing classes can be termed as “base class” and the new classes can be
termed as “derived class”. There are different forms of inheritance like
single inheritance, multilevel inheritance, multiple inheritance and hybrid
inheritance.

 Single inheritance:

Here class A is the base class and class B is the derived class.
Properties of class A can be visible in class B (along with its own
properties if any) as per the visibility mode used at the time of
inheritance. In single inheritance there is one level of inheritance. For
example:
#include<iostream.h>
Class base //base class
{
 int x; //private not inheritable and not accessible outside the
class
 public: // members are inheritable and also accessible outside
the class
 int y;
 void fun(int a, int b)
 {//body of fun}
};
Class derived : public base //derived class inheriting the base class
publicly
{
 int p; //private not inheritable and not accessible outside the
class

A

B

 public: // members are inheritable and also accessible outside
the class
 int q;
 void fun1()

{//body of fun1}
};
Void main()
{
 derived d1;
 [d1.x=10// access denied as private members can’t be
inherited]
 d1.y=20// access of base class public property through derived
class object
 d1.fun(10,20)// access of base class public property through
derived class object
 [d1.p=10// accsess denied as private members can’t accessed
outside the class]

d1.q=10// access of own public members
d1.fun1()// access of own public members

}

 Multiple inheritance:
Here the class C inherits the attributes of two classes A
and B. In case of multiple inheritance a class can inherit
the attributes of two or more classes. It allows us to
combine the features of several existing classes as a
starting point for defining a new class. For example:

Class base1 //base class
{
 int x; //private not inheritable and not accessible outside the
class
 public: // members are inheritable and also accessible outside
the class
 int y;
 void fun(int a, int b)
 {//body of fun}
};
Class base2 //base class
{
 int p; //private not inheritable and not accessible outside the
class

C

B A

 public: // members are inheritable and also accessible outside
the class
 int q;
 void fun1(int a, int b)
 {//body of fun1}
};
Class derived : public base1, public base2 //derived class inheriting
two base classes publicly
{
 int m; //private not inheritable and not accessible outside the
class
 public: // members are inheritable and also accessible outside
the class
 int n;
 void fun2()

{//body of fun1}
};
Void main()
{

derived d1;
 [d1.x=10// access denied as private members can’t be
inherited]
 d1.y=20// access of base class public property through derived
class object
 d1.fun(10,20)// access of base class public property through
derived class object

[d1.p=10// access denied as private members can’t be
inherited]

d1.q=10// access of base class public property through derived
class object

d1.fun1()//access of base class public property through derived
class object

 d1.m=10//private not inheritable and not accessible outside
the class

d1.n=10// access of own public members
d1.fun2()// access of own public memberss

 }
Answer 3.
You should write a program for unary operator with friend function and member
function and explain that program.

 (Refer:- page no. 173-175 Book name :- Object Oriented Programming C++

fourth Edition)

Answer 4

 Difference Between Procedure Oriented Programming (POP) & Object

Oriented Programming (OOP)

Procedure Oriented

Programming
Object Oriented Programming

Divided Into
In POP, program is divided into

small parts called functions.

In OOP, program is divided into

parts called objects.

Importance

In POP,Importance is not given to

data but to functions as well as

sequence of actions to be done.

In OOP, Importance is given to

the data rather than procedures or

functions because it works as a

real world.

Approach
POP follows Top Down

approach.

OOP follows Bottom Up

approach.

Access

Specifiers

POP does not have any access

specifier.

OOP has access specifiers named

Public, Private, Protected, etc.

Data

Moving

In POP, Data can move freely

from function to function in the

system.

In OOP, objects can move and

communicate with each other

through member functions.

Data Access

In POP, Most function uses

Global data for sharing that can

be accessed freely from function

to function in the system.

In OOP, data can not move easily

from function to function,it can be

kept public or private so we can

control the access of data.

Data Hiding

POP does not have any

proper way for hiding data so

it is less secure.

OOP provides Data Hiding so

provides more security.

Overloading
In POP, Overloading is not

possible.

In OOP, overloading is possible in the

form of Function Overloading and

Operator Overloading.

Examples
Example of POP are : C, VB,

FORTRAN, Pascal.

Example of OOP are : C++, JAVA,

VB.NET, C#.NET.

Answer 5

You should explain union and structure with simple example and also explain

memory allocation in both for data member and compare both with class as

discussed in class.

Answer 6

You should write program for both arguments passed by value and passed as

reference and explain that program.

 (Refer:- page no. 123,124,130,131 Book name :- Object Oriented Programming

C++ fourth Edition)

Answer 7

Rules to declare constructor and destructor of a class:

 Example:
 #include<iostream.h>
 class test
 {
 int x;
 public:
 test(int a) //constructor with one argument
 {
 x=a;

Constructor Destructor

 Constructor name must be same as
class name

 Destructor name must be same
as class name

 It has no return type, not even void  ~ symbol before the name of
destructor is must.

 It has to be declared in the public
section

 It never take any argument

 It can’t be virtual  It never return any value

 It is invoked automatically with the  It is invoked automatically when
the object is destroyed

 Multiple constructors is allowed

 Like other function, it can have
arguments

 It is invoked automatically when
the object is created

 One can overload constructor

 }
 ~test() //destructor
 {
 cout<<”Object has been destroyed”;
 }
 };
 void main()
 {
 test t1(5); //implicit call to the constructor
 test t2=test(10); //explicit call to the constructor

 } //destructor invoked automatically twice with the destruction of the
object t1 and t2
 Relevancy and utility:

Though any object creation invokes default constructor, we can create our
customized constructor as per the necessity of the program and it may
perform any startup job specifically assignment of data members. As per
the example, we have created one parameterized constructor which can
initialize the value of private data member x of the class test. Using that
constructor we can assign the value of x at the time of declaration of test
class object.
For destructor, we can be sure the destruction of the object immediately
after the expiration of the objects by customizing the destructor. In the
example we would receive two messages of confirmation of destruction of
objects t1 and t2.

Answer 8

Data abstraction refers to, providing only essential information to the outside world

and hiding their background details, i.e., to represent the needed information in

program without presenting the details.

Data abstraction is a programming (and design) technique that relies on the

separation of interface and implementation.

Let's take one real life example of a TV, which you can turn on and off, change the

channel, adjust the volume, and add external components such as speakers, VCRs,

and DVD players, BUT you do not know its internal details, that is, you do not

know how it receives signals over the air or through a cable, how it translates them,

and finally displays them on the screen.

Thus, we can say a television clearly separates its internal implementation from its

external interface and you can play with its interfaces like the power button,

channel changer, and volume control without having zero knowledge of its

internals.

Now, if we talk in terms of C++ Programming, C++ classes provides great level of

data abstraction. They provide sufficient public methods to the outside world to

play with the functionality of the object and to manipulate object data, i.e., state

without actually knowing how class has been implemented internally.

For example, your program can make a call to the sort() function without knowing

what algorithm the function actually uses to sort the given values. In fact, the

underlying implementation of the sorting functionality could change between

releases of the library, and as long as the interface stays the same, your function

call will still work.

In C++, we use classes to define our own abstract data types (ADT). You can use

the cout object of class ostream to stream data to standard output like this:

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello C++" <<endl;

 return 0;

}

Here, you don't need to understand how cout displays the text on the user's screen.

You need to only know the public interface and the underlying implementation of

cout is free to change.

Access Labels Enforce Abstraction:

In C++, we use access labels to define the abstract interface to the class. A class

may contain zero or more access labels:

 Members defined with a public label are accessible to all parts of the

program. The data-abstraction view of a type is defined by its public

members.

 Members defined with a private label are not accessible to code that uses the

class. The private sections hide the implementation from code that uses the

type.

There are no restrictions on how often an access label may appear. Each access

label specifies the access level of the succeeding member definitions. The specified

access level remains in effect until the next access label is encountered or the

closing right brace of the class body is seen.

Benefits of Data Abstraction:

Data abstraction provides two important advantages:

 Class internals are protected from inadvertent user-level errors, which might

corrupt the state of the object.

 The class implementation may evolve over time in response to changing

requirements or bug reports without requiring change in user-level code.

By defining data members only in the private section of the class, the class author

is free to make changes in the data. If the implementation changes, only the class

code needs to be examined to see what affect the change may have. If data are

public, then any function that directly accesses the data members of the old

representation might be broken.

Data Abstraction Example:Any C++ program where you implement a class with

public and private members is an example of data abstraction. Consider the

following example:

#include <iostream>

using namespace std;

class Adder{

 public:

 // constructor

 Adder(int i = 0)

 {

 total = i;

 }

 // interface to outside world

 void addNum(int number)

 {

 total += number;

 }

 // interface to outside world

 int getTotal()

 {

 return total;

 };

 private:

 // hidden data from outside world

 int total;

};

int main()

{

 Adder a;

 a.addNum(10);

 a.addNum(20);

 a.addNum(30);

 cout << "Total " << a.getTotal() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Total 60

Above class adds numbers together, and returns the sum. The public members

addNum and getTotal are the interfaces to the outside world and a user needs to

know them to use the class. The private member total is something that the user

doesn't need to know about, but is needed for the class to operate properly.

	Definition
	Syntax
	Example Program
	Sample Output
	Run time polymorphism:
	Example of run time polymorphism:

	Access Labels Enforce Abstraction:
	Benefits of Data Abstraction:
	Data Abstraction Example:Any C++ program where you implement a class with public and private members is an example of data abstraction. Consider the following example:

